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Abstract
We present General Time Transformer (GTT), an
encoder-only style foundation model for zero-shot
multivariate time series forecasting. GTT is pre-
trained on a large dataset of 200M high-quality
time series samples spanning diverse domains. In
our proposed framework, the task of multivariate
time series forecasting is formulated as a channel-
wise next curve shape prediction problem, where
each time series sample is represented as a se-
quence of non-overlapping curve shapes with a
unified numerical magnitude. GTT is trained to
predict the next curve shape based on a window
of past curve shapes in a channel-wise manner.
Experimental results demonstrate that GTT ex-
hibits superior zero-shot multivariate forecasting
capabilities on unseen time series datasets, even
surpassing state-of-the-art supervised baselines.
Additionally, we investigate the impact of vary-
ing GTT model parameters and training dataset
scales, observing that the scaling law also holds
in the context of zero-shot multivariate time series
forecasting.

1. Introduction
Time series forecasting, the task of predicting future val-
ues of one or multiple variables based on their historical
values and other potentially relevant information, holds sig-
nificant importance across diverse domains including man-
ufacturing, traffic, healthcare, finance, and environmental
science. In response to its practical significance, a large
variety of time series forecasting methods have been devel-
oped. Earlier work includes classic statistical approaches
such as ARIMA (Box & Jenkins, 1968; Durbin & Koop-
man, 2012), Exponential Smoothing (Hyndman et al., 2008)
and VAR (Zivot & Wang, 2006), as well as those lever-
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age deep sequential models like recurrent neural networks
(RNNs) (Salinas et al., 2020) and convolutional neural net-
works (CNNs) (Borovykh et al., 2018). In recent years, two
distinct directions have emerged regarding the utilization of
deep neural networks for time series forecasting. On one
hand, building on the success of the Transformer architec-
ture (Vaswani et al., 2017) in natural language processing
(NLP) and computer vision (CV), there has been a surge
in leveraging Transformer-like architecture for time series
forecasting. Examples include Pyraformer (Liu et al., 2021),
LogTrans (Li et al., 2019), Informer (Zhou et al., 2021), Aut-
oformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
Crossformer (Zhang & Yan, 2022) and PatchTST (Nie et al.,
2022), to name a few. On the other hand, there is also a dif-
ferent voice that simple multilayer perceptrons (MLP)-like
models can achieve similar or even better time-series fore-
casting performance than sophisticated Transformer-based
models (Zeng et al., 2023; Ekambaram et al., 2023). This
discrepancy may be attributed to the fact that Transformers
tend to overfit small datasets, and that the largest publicly
available time series dataset is less than 10 GB (Godahewa
et al., 2021), which is significantly smaller compared to
those in NLP and CV domains.

In this work, inspired by the Transformer scaling successes
in NLP and CV domains, we experiment with training a
Transformer-based foundation model, which we term Gen-
eral Time Transformer (GTT), for zero-shot multivariate
time series forecasting on a large dataset containing 200M
high-quality time series samples collected from diverse do-
mains. To overcome the challenges of dataset/distribution
shift, as well as varying channel/variable1 dimensions of
time series samples across different domains, the task
of multivariate time series forecasting is formulated as a
channel-wise next curve shape prediction problem within
our framework. Specifically, we do not introduce any time-
series-specific inductive biases, but instead treat each time
series sample as a sequence of non-overlapping curve shapes
with a unified numerical magnitude. Each curve shape com-
prises M consecutive time points of a single variable. GTT is
trained to use N preceding curve shapes as the context to pre-

1We will use the terms “channel” and “variable” interchange-
ably throughout the rest of the paper.
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dict the next curve shape on a channel-wise basis. We adopt
an encoder-only architecture for GTT with the fewest possi-
ble modifications to the standard Transformer. The only ma-
jor modification we introduced is a cross-channel attention
stage after the temporal attention stage in each multi-head
self-attention block to capture cross-variate dependency be-
tween channels. GTT employs an auto-regressive approach
to handle long-term forecasting tasks extend beyond M time
steps.

GTT exhibits excellent zero-shot multivariate time series
forecasting performance on various benchmark datasets,
even outperforming state-of-the-art supervised baselines in
several cases. We also demonstrate that GTT can achieve
noticeably improved performance with cost-effective fine-
tuning on target datasets. Moreover, in zero-shot univari-
ate forecasting, GTT achieves higher prediction accuracy
compared to other pretrained foundation models specifi-
cally designed for univariate time series forecasting. Ad-
ditionally, we have conducted an investigation into the
influence of different scales of GTT model parameters
and training datasets, which reveals that the scaling law
also holds in our context. Our codebase is available at
https://github.com/cfeng783/GTT.

We summarize the main contributions of this paper as fol-
lows:

• We introduce a framework that formulates the task of
cross-domain multivariate time series forecasting into
a problem of predicting the next curve shape given
a context window of past curve shapes in a unified
numerical magnitude on a channel-wise basis. This
framework lays a solid foundation for the development
of large-scale foundation models for multivariate time
series forecasting.

• Our experimental results demonstrate that foundational
models for time series forecasting, trained on datasets
of comparable size to those used in CV and NLP do-
mains, can also achieve outstanding zero-shot forecast-
ing capabilities.

• To the best of our knowledge, GTT is the first foun-
dation model for zero-shot multivariate time series
forecasting.

2. Related Work
In recent years, deep neural networks such as RNNs (Salinas
et al., 2020) and dilated CNNs (Borovykh et al., 2017) have
gained significant prominence as formidable contenders in
the field of time-series forecasting, particularly when con-
fronted with large training datasets. Empirical evidence has
demonstrated their superiority over conventional statistical
methods, including ARIMA and exponential smoothing via

various forecasting competitions (Makridakis et al., 2022;
Kopp et al., 2021).

More recently, drawing inspiration from the triumph of
the Transformer architecture in the realms of NLP and
CV, there has been a notable surge in the utilization of
Transformer-like architectures for time series forecasting.
The first group of Transformer variants focuses on the de-
velopment of novel attention modules to reduce computa-
tional complexity for long time series. Pyraformer (Liu
et al., 2021), LogTrans (Li et al., 2019), and Informer (Zhou
et al., 2021) are notable examples within this category. The
second group of Transformer variants places specific em-
phasis on leveraging time and frequency domain features.
For example, Autoformer (Wu et al., 2021) introduces a
seasonal-trend decomposition architecture, incorporating
an auto-correlation mechanism to serve as an attention
module. Recognizing that the point-wise attention of the
Transformer architecture fails to capture overall character-
istics of time series, FEDformer (Zhou et al., 2022) pro-
poses a frequency-enhanced seasonal-trend decomposition
method to better capture global properties of time series.
Three variants closely aligned with our research are Cross-
former (Zhang & Yan, 2022), iTransformer (Liu et al.,
2023) and PatchTST (Nie et al., 2022). Crossformer and
iTransformer, in particular, explicitly exploit cross-channel
dependencies that play a vital role in achieving precise mul-
tivariate forecasting outcomes. PatchTST, on the other hand,
employs patching techniques to enhance the local semantic
information of input tokens of time series data.

Conversely, an alternative perspective suggests that simple
MLP-like models may yield comparable, if not superior,
performance in time-series forecasting when compared to
sophisticated Transformer-based models (Zeng et al., 2023;
Ekambaram et al., 2023). Our conjecture is rooted in the
notion that Transformers tend to overfit small datasets. For
instance, the largest publicly available dataset for time series
analysis is less than 10 GB (Godahewa et al., 2021), which
pales in comparison to the vast datasets used in the NLP and
CV domains to train Transformers. Thus, to better leverage
the powerful modelling ability of Transformers while miti-
gating the risk of overfitting, reprogramming or fine-tuning
pretrained acoustic and large language models (LLMs) for
time series forecasting becomes another promising option
(Yang et al., 2021; Zhou et al., 2023; Jin et al., 2023; Chang
et al., 2023). Meanwhile, there are also works which di-
rectly use LLMs for time series forecasting (Gruver et al.,
2023).

The exploration of foundation models pretrained on large
datasets for zero-shot time series forecasting remains rel-
atively limited in comparison to the advancements made
in NLP and CV fields. However, there have been
some notable efforts recently. Among the examples are
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ForecastPFN (Dooley et al., 2023), TimeGPT (Garza &
Mergenthaler-Canseco, 2023), Lag-Llama (Rasul et al.,
2023) and PreDcT (Das et al., 2023). ForecastPFN is a
Transformer-based prior-data fitted network trained purely
on synthetic data designed to mimic common time series
patterns. TimeGPT is a Transformer-based time series fore-
casting model trained over 100B data points, with other
data and model details remain unrevealed. Lag-Llama, a
probabilistic time series forecast model adapted from the
LlaMA (Touvron et al., 2023) architecture, is trained on
a large collection of time series from the Monash Time
Series Repository (Godahewa et al., 2021). PreDcT is a
patched-decoder style model trained on 1B time points from
Google Trends. GTT distinguishes itself from existing mod-
els through several notable differences. Firstly, our training
data is much more diverse compared with ForecastPFN,
LlaMA and PreDcT. Secondly, we utilize an encoder-only
architecture instead of a decoder-only architecture, wherein
the task of time series forecasting is approached as a prob-
lem of predicting the next curve shape in a unified numerical
magnitude. Lastly, GTT incorporates a channel attention
mechanism, specifically designed for multivariate time se-
ries forecasting, rather than focusing solely on univariate
forecasting.

3. Problem Definition
We consider building a general purpose zero-shot multivari-
ate time series forecaster that takes in a look-back window
of L time points of a time-series and optionally their corre-
sponding time features as context, and predicts the future
H time points. Let x1:L and d1:L be the context time series
and corresponding time feature values, GTT is a function to
predict x̂L+1:L+H , such that

x̂L+1:L+H = f(x1:L,d1:L)

Note since we are building a general purpose multivariate
forecaster, the only covariates we consider in the pretraining
stage are three time features: second of the day, day of the
week and month of the year. These three time features, if
available, are converted to 6 features using sine and cosine
transformations2.

4. Method
4.1. Pretraining Data Preparation

We collected a large scale time series repository containing
2.4B univariate or multivariate time points from both inter-
nal and public sources. Our repository consists of about
180,000 univariate or multivariate time series spanning di-
verse domains including manufacturing, transportation, fi-

2https://ianlondon.github.io/blog/encoding-cyclical-features-
24hour-time/

nance, environmental sensing, healthcare, to name some.

For each series, we take its first 90% time points to extract
training samples and the remaining 10% time points to ex-
tract validation samples (we monitor validation loss for early
stopping during training). Each extracted time series sample
consists of 1088 consecutive time points without missing
values. Our model is trained to predict the values of the
last 64 time points using the preceding 1024 time points as
context.

To ensure consistency, we restrict the max number of chan-
nels for a time series sample to 32, in which 6 channels are
reserved for time features. In case the number of channels
of a time series sample is less than 32, we complement its
channel number to 32 by setting all the values in the added
channels to zero. Conversely, if a time series sample has
more than 32 channels, we divide it into samples with 32 or
fewer channels and then supplement the samples with less
than 32 channels to reach the total of 32 channels.

To achieve a unified numerical magnitude for time series
samples across different datasets, we normalize each time
series sample on a channel-wise basis. Specifically, the first
1024 time points are normalized to have zero mean and
unit variance. Then, the last 64 time points are normalized
using the calculated channel mean and standard deviation
from the first 1024 time points. More precisely, let x1:1024

and x1025:1088 be the first 1024 and last 64 time points
for a channel of time series sample, the normalization is
conducted as follows:

x1025:1088 =
x1025:1088 − mean(x1:1024)

stdev(x1:1024) + ϵ

x1:1024 =
x1:1024 − mean(x1:1024)

stdev(x1:1024) + ϵ

Normalized samples that have a data point with an absolute
value greater than 9 are discarded to exclude samples con-
taining extreme values. Furthermore, we mask 1 to 960 time
points in the beginning of 10% randomly chosen samples
to zero values. This manipulation allows us to generate
samples with shorter context lengths, providing a variation
in the length of context within the training data.

Lastly, to ensure a balance between the scale and domain
diversity of our training data, we restrict the max number
of training or validation samples that can be extracted from
a single time series to 60,000. In the end, approximately
200M high quality training samples and 24M validation
samples are generated from our repository.

4.2. General Time Transformer

An overview of GTT is depicted in Figure 1. Specifically,
we split an input multivariate time series sample into fixed-
size non-overlapping patches channel-wise. Each patch
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RevIN

RevIN

input 

Patching + Positional Encoding

Encoder Layer

Forecast Head

𝐗 ∈ ℝ𝐵×𝑇×𝐶

𝑁 ×

Temporal Attention*

Channel Attention*

Layer Norm

MLP

Layer Norm

Layer Norm

⨁
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output 

Figure 1: Model overview. We split an input multivariate time series into fixed-size non-overlapping patches (curve shapes)
channel-wise, linearly embed each of them, add position encodings, and feed the resulting sequence of patches to the
encoder. The encoder has an extra channel attention stage compared with the standard Transformer, the temporal and
channel attention share the same weights. We add a linear head to the last token to perform forecasting. During inference,
we add RevIN layers to normalize and denormalize time series channels and pad zeros in front of time series samples with
less than 1024 time points.

represents a curve shape composed of 64 time points of a
single variable. We linearly embed each of the patches, add
position encodings, and then feed the resulting sequence of
patches to the encoder. The encoder has an extra channel
attention stage compared with the standard Transformer.
For parameter efficiency, the temporal and channel attention
share the same weights. Weight sharing between multi-head
self attentions applied on different input dimensions has
been proved effective (Yang et al., 2022). Lastly, we add
a linear head to the last token to perform forecasting of
the next patch (curve shape). During inference, we apply
reversible instance normalization (RevIN) (Kim et al., 2021)
to first normalize the input data into zero mean and unit
variance and then padding zeros in the front if the length
of input time series is shorter than 1024. The predicted
output is denormalized into its original scale by using the
pre-calculated mean and variance of the input data. In this
way, no normalization is needed for input data before using
GTT which significantly improves the convenience of model
usage.

It is important to note that upon closer examination, the
architectural similarities between GTT and Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) become apparent if
curve shapes are thought as special type of image patches.
However, a significant distinction arises in their treatment of

channels. While ViT combines RGB channels of an image
within its patching process, GTT independently processes
time series channels and incorporates an additional stage
for channel attention, which facilitates the learning of cross-
variate dependencies with varying channel numbers. We
now describe the key components of GTT architecture. In
the presentation, we use the following notations: B: batch
size, T : input time series length, C: number of input chan-
nels (number of target variables, covariates, time features in
total), O: number of output channels (number of target vari-
ables), M : number of patches, P : patch size, D: number of
embedding dimensions, N : number of encoder layers.

Patching and Positional Encoding Let X ∈ RB×T×C

be the input batch of time series samples, we first reshape
X to X̂ ∈ RBC×T×1, then utilize a one-dimensional convo-
lutional layer (Conv1D) with kernel size and strides equal
to patch size P and number of filters equals to D, to seg-
ment input series into patches and then embed them into
M ×D dimensional patch embeddings channel-wise. We
use the Positional Encoding in the original Transformer
paper (Vaswani et al., 2017) for encoding position informa-
tion and add position encodings to the patch embeddings to
retain sequential information:

X̂ = Reshape(X), X ∈ RB×T×C , X̂ ∈ RBC×T×1

Z0 = Conv1D(X̂) +Epos, Epos,Z0 ∈ RBC×M×D

4
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(a) Temporal Attention (T-MSA) (b) Channel Attention (C-MSA)

Figure 2: Illustration of Temporal and Channel Attention

Encoder Layers To utilize both temporal and cross chan-
nel dependencies for the forecasting task, we apply two
multi-head self attentions (MSA), which we call temporal
attention (T-MSA) and channel attention (C-MSA) in each
encoder layer of GTT. An illustration of T-MSA and C-
MSA is given in Figure 2. A MLP consisting of two layers
with a GELU non-linearity (Hendrycks & Gimpel, 2016)
is applied after T-MSA and C-MSA. Layernorm (LN) and
residual connections are also applied:

Z′
l = T-MSA(LN(Zl−1)) + Zl−1, l = 1, . . . , N

Ẑ′
l = Reshape(Z′

l), Z′
l ∈ RBC×M×D, Ẑ′

l ∈ RBM×C×D

Ẑ′′
l = C-MSA(LN(Ẑ′

l)) + Ẑ′
l, l = 1, . . . , N

Z′′
l = Reshape(Ẑ′′

l ), Ẑ′′
l ∈ RBM×C×D,Z′′

l ∈ RBC×M×D

Zl = MLP(LN(Z′′
l )) + Z′′

l , l = 1, . . . , N

Note that although the channel number in the pretraining
stage is set to 32, since channel attention requires no po-
sitional information, the trained model can generalize to
varying channel dimensions in the inference stage.

Forecast Head Following the encoder layers, we retrieve
ZM

N , the last token of the last encoder layer, and then a linear
forecast head is attached to ZM

N for predicting the next patch
of time points for all channels, i.e., the linear head is shared
by all channels. Lastly, we retrieve the channels for the
target variables as the output:

Y′ = ZM
N WD×P + bP , ZM

N ∈ RBC×D,Y′ ∈ RBC×P

Y′′ = Reshape(Y′), Y′′ ∈ RB×P×C

Y = Retrieve(Y′′), Y ∈ RB×P×O

Loss Function The model is trained to minimize the Mean
Absolute Error (MAE) between ground-truth and predicted

values. We choose the MAE loss because it is less sensitive
to outliers. It is worth to mention that the MAE loss is only
calculated on the originally exist data points, i.e., data points
in the supplemented channels from the data preparation step
are excluded from the loss computation.

RevIN and Zero-Padding During the inference phase,
we employ reversible instance normalization (RevIN) (Kim
et al., 2021) to normalize the input data to have zero mean
and unit variance within the model. If the length of the input
time series is shorter than 1024, we pad zeros at the begin-
ning. The predicted output is then denormalized back to its
original scale using the pre-calculated mean and variance
of the input data. This approach eliminates the need for
normalization of the input data prior to using GTT, thereby
significantly improving the convenience of model usage
during inference.

It is important to note that RevIN is not employed during the
training stage, which distinguishes it from many recently
proposed deep supervised models (Wu et al., 2022; Nie et al.,
2022; Zhou et al., 2023; Chang et al., 2023). This decision
is based on the fact that the use of RevIN cannot guarantee
a unified magnitude of values for time series samples. For
instance, two time series samples [0.0001,0.0002,...,0.1288]
and [0.001,0.002,...,1.288], with the same curve shapes,
would result in the exact same loss value in our framework.
However, if RevIN were used, they would contribute differ-
ent loss values if their original values were used to calculate
the loss. This discrepancy would introduce bias towards
time series samples with larger values during pretraining.

4.3. Why Encoder-only Architecture

Our encoder-only architecture ensures that the predicted
values are normalized strictly using the mean and standard
deviation of the entire context window. However, employing
a decoder-only architecture is problematic in this regard. In
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Table 1: Details of GTT model variants.

Model Encoder layers Embedding dimension Number of heads MLP size Parameters

GTT-Tiny 4 384 6 1536 7M
GTT-Small 6 512 8 2048 19M
GTT-Large 8 768 12 3072 57M

Table 2: Statistics of benchmark datasets.

Datasets Number of features Time points (Train, Validation, Test) Frequency

ETTm1, ETTm2 7 (34465, 11521, 11521) 15 mins
ETTh1, ETTh2 7 (8545, 2881, 2881) Hourly

Electricity 321 (18317, 2633, 5261) Hourly
Traffic 862 (12185, 1757, 3509) Hourly

Weather 21 (36792, 5271, 10540) 10 mins
ILI 7 (617, 74, 170) Weekly

the decoder-only architecture, where the first patch predicts
the second patch, and subsequently, the first two patches
predicts the third patch, the normalization process faces a
conflict. Specifically, during the pretraining data prepara-
tion step, normalization is based on the mean and standard
deviation of the complete context window. As a result, the
normalization of predicted values for earlier patches is in-
fluenced by the mean and standard deviation of subsequent
patches which are not observable during the inference phase
if the decoder-only architecture were used. This conflict
compromises the normalization process, leading to incon-
sistencies in the magnitude of values across different time
series samples.

5. Experiments
5.1. Experimental Settings

Model Variants Our largest trained model has 57M pa-
rameters, which is significantly smaller than those foun-
dation models in NLP and CV domains. Nevertheless, we
already observe excellent zero-shot forecasting performance.
Details on the GTT model variants are provided in Table 1.
All models are trained using the 200M training samples and
24M validation samples as described in Section 4.1. We
train all models using the AdamW optimizer (Loshchilov &
Hutter, 2017), training is stopped when the validation loss
increases in three consecutive epochs. More training details
are given in the appendix.

Benchmark Datasets To evaluate the forecasting per-
formance of GTT, we follow the benchmarks used in
PatchTST (Nie et al., 2022). Specifically, 8 popular datasets,
including 4 ETT datasets, Electricity, Traffic, Weather and
ILI are used. The statistics of benchmark datasets are sum-

marized in Table 2. It is also worthy to mention that all the
benchmark datasets are not included in our pretraining data.

5.2. Comparison to Supervised Models

We first compare the zero-shot multivariate forecast-
ing performance of our largest model, GTT-Large, to
state-of-the-art supervised forecasting models, including
GPT4TS (Zhou et al., 2023), PatchTST (Nie et al., 2022),
Crossformer (Zhang & Yan, 2022), Fedformer (Zhou et al.,
2022), TimesNet (Wu et al., 2022), DLinear (Zeng et al.,
2023), TSMixer (Ekambaram et al., 2023) and iTrans-
former (Liu et al., 2023). All the above supervised baselines
are trained on the train split of each benchmark dataset.
Additionally, we also report the performance of GTT (we
refer GTT to GTT-Large if not specified hereafter) after
fine-tuning on the train split of each benchmark dataset.
Note that we only tune the Forecast Head and keep other
parameters of GTT fixed during fine-tuning. The results,
in terms of Mean Square Error (MSE) and Mean Absolute
Error (MAE) on the test split of each benchmark dataset,
are given in Table 3. We report the results of the baselines
directly from their original papers if available.

We find that GTT without fine-tuning achieves the best
MAE on 1 dataset, second best MAE on 5 datasets, and
second best MSE on 2 datasets. Notably, GTT performs
remarkably well even in a zero-shot scenario, where it faces
a disadvantage as other methods have the opportunity to
train on the benchmark datasets. Furthermore, we find that
after fine-tuning on the train split of benchmark datasets, the
performance of GTT can be further significantly improved.
It achieves the best MAE on 6 datasets, best MSE on 4
datasets. These results clearly demonstrate the superiority
of GTT as a foundation model for multivariate time series
forecasting.
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Table 3: Multivariate time series forecasting. The results are obtained by averaging predictions for four different lengths: 24,
36, 48, and 60 for the ILI dataset, 96, 192, 336, and 720 for other datasets. The best value for each metric is highlighted in
red, while the second-best value is highlighted in blue. ZS is short for Zero-Shot and FT is short for Fine-Tune.

Model GTT (ZS) GTT (FT) GPT4TS PatchTST Crossformer Fedformer TimesNet DLinear TSMixer iTransformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.398 0.392 0.370 0.383 0.352 0.383 0.353 0.382 0.405 0.424 0.448 0.452 0.400 0.406 0.357 0.379 0.351 0.378 - -
ETTm2 0.279 0.324 0.253 0.309 0.266 0.326 0.256 0.317 - - 0.305 0.349 0.291 0.333 0.267 0.332 0.254 0.314 - -
ETTh1 0.418 0.415 0.420 0.411 0.427 0.426 0.413 0.434 0.457 0.454 0.440 0.460 0.458 0.450 0.423 0.437 0.408 0.430 - -
ETTh2 0.314 0.359 0.298 0.353 0.346 0.394 0.331 0.381 - - 0.434 0.447 0.414 0.427 0.431 0.447 0.340 0.387 - -

Electricity 0.157 0.249 0.155 0.246 0.167 0.263 0.159 0.253 0.305 0.358 0.214 0.327 0.192 0.295 0.166 0.264 0.155 0.251 0.178 0.270
Traffic 0.404 0.260 0.390 0.257 0.414 0.294 0.391 0.264 0.506 0.285 0.610 0.376 0.620 0.336 0.434 0.295 0.386 0.263 0.428 0.282

Weather 0.227 0.247 0.218 0.249 0.237 0.270 0.226 0.264 0.409 0.447 0.309 0.360 0.259 0.287 0.246 0.300 0.224 0.262 0.258 0.279
ILI 1.536 0.732 1.668 0.724 1.925 0.903 1.480 0.807 3.387 1.236 2.847 1.144 2.139 0.931 2.169 1.041 - - - -

Table 4: Zero-shot univariate time series forecasting for
the “OT” feature of benchmark datasets. The results are
obtained by averaging predictions for four different lengths:
24, 36, 48, and 60 for the ILI dataset, 96, 192, 336, and
720 for other datasets. The best number for each metric is
colored red.

Model GTT ForecastPFN
MSE MAE MSE MAE

ETTm1 0.049 0.160 0.175 0.322
ETTm2 0.118 0.254 0.568 0.598
ETTh1 0.084 0.222 0.190 0.350
ETTh2 0.212 0.359 0.604 0.618

Electricity 0.267 0.355 2.257 1.233
Traffic 0.126 0.219 4.121 1.650

Weather 0.002 0.028 0.003 0.040
ILI 0.582 0.551 2.903 9.825

Table 5: Zero-shot univariate time series forecasting for the
“OT” feature of benchmark datasets. The prediction length
is 96 for ETT datasets, and 24 for ILI. The best number for
each metric is colored red. The results for PreDcT is cited
from (Das et al., 2023).

Model GTT PreDcT
NRMSE WAPE NRMSE WAPE

ETTm1 0.129 0.096 0.591 0.310
ETTm2 0.240 0.174 0.199 0.123
ETTh1 0.203 0.153 0.672 0.378
ETTh2 0.397 0.306 0.238 0.151

ILI 0.313 0.215 0.477 0.152

ETT Electricity Traffic Weather ILI
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Figure 3: Zero-shot multivariate forecasting performance on
benchmark datasets of GTT with different model parameter
scales. The results for ETT are averaged from the four ETT
datasets.
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Figure 4: Zero-shot multivariate forecasting performance
on benchmark datasets of GTT-Large with different training
data scales. The results for ETT are averaged from the four
ETT datasets.
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Figure 5: Zero-shot forecast of last 24 months’ values in Air Passenger dataset produced by GTT-Tiny (left), GTT-Small
(mid), and GTT-Large (right). We observe that with a larger model, the accelerated increasing trend can be better captured.

5.3. Comparison to Pretrained Models

We then compare GTT against recently proposed pre-
trained models for zero-shot univariate time series fore-
casting, specifically ForecastPFN (Dooley et al., 2023) and
PreDcT (Das et al., 2023). It should be noted that we ex-
cluded TimeGPT (Garza & Mergenthaler-Canseco, 2023)
and Lag-Llama (Rasul et al., 2023) from the comparison
as their models have not been released yet and no compa-
rable results on the benchmark datasets are presented in
their papers. Table 4 presents the zero-shot performance of
GTT and ForecastPFN in terms of MAE and MSE on all
benchmark datasets for univariate time series forecasting.
GTT demonstrates a substantial margin of improvement
over ForecastPFN, outperforming it on all datasets. Table 5
compares GTT’s zero-shot performance for univariate time
series forecasting with PreDcT in terms of Normalized Root
MSE (NRMSE) and Weighted Average Percentage Error
(WAPE) on five benchmark datasets. It is important to note
that since a pretrained model for PreDcT has not been re-
leased, we directly cite the results for PreDcT from the
original paper (Das et al., 2023). GTT outperforms PreDcT
in half of the scenarios. It is worth mentioning that the com-
parison is limited to univariate forecasting as GTT is the
only pretrained model capable of supporting both univariate
and multivariate forecasting.

5.4. Scaling Study

We first study how the parameter scale impacts the zero-shot
multivariate forecast performance of GTT models. Figure 3
gives the forecasting performance in terms of MAE on the
benchmark datasets for GTT-Tiny, GTT-Small and GTT-
Large. It can be observed that when the training data size
does not bottleneck, the zero-shot forecasting accuracy in-
creases with a larger model. Figure 5 gives an interesting
example of how model parameter scale impact zero-shot
forecasting performance using the Air Passenger dataset 3:
we find that with a larger model, the accelerated increasing

3https://www.kaggle.com/datasets/rakannimer/air-
passengers/data

trend in the Air Passenger dataset can be better captured.

We then study how crucial is the training dataset size. Specif-
ically, we also pre-train GTT-Large models on smaller
datasets of size: 50M and 100M training samples. Fig-
ure 4 gives the zero-shot forecasting performance in terms
of MAE on the benchmark datasets for GTT-Large pre-
trained on 50M, 100M and 200M samples respectively. It
can be seen that when the model size does not bottleneck,
the zero-shot forecasting accuracy also increases with a
larger training dataset.

Importantly, the above results indicates that GTT does not
appear to reach saturation within the range of model parame-
ter and dataset sizes explored. This motivates future scaling
efforts for our proposed method.

6. Conclusions
We have explored training a Transformer-based foundation
model called GTT for multivariate time series forecasting.
We do not introduce any time-series-specific inductive bi-
ases into the GTT architecture. Instead, we interpret an
arbitrary multivariate time series as a sequence of curve
shapes (patches) and process it on a channel-wise basis by a
Transformer encoder with an extra channel attention stage.
This straightforward yet scalable approach yields impres-
sive results, particularly when combined with pretraining
on large datasets. GTT demonstrates comparable or supe-
rior performance to many advanced supervised models in
multivariate time series forecasting across various widely
used benchmark datasets.

While these initial findings are promising, several challenges
still need to be addressed. Firstly, it is crucial to incorporate
uncertainty calibration, encompassing both aleatoric and
epistemic uncertainties, into the forecasting outcomes to en-
hance the reliability of GTT predictions. Another challenge
is to extend the context length of GTT models to further im-
prove their forecasting capabilities. Lastly, further scaling
of GTT is expected to yield enhanced performance.
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7. Potential Broader Impact
This paper presents work whose goal is to advance the field
of time series forecasting. One of the societal consequences
of our work could be the promotion of large-scale founda-
tion models specifically designed for time series analysis
tasks. Like in CV and NLP domains, the reliability of such
foundation models must be carefully checked before mas-
sive usage in public.
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Models Optimizer Initial LR LR Decay Weight Decay Gradient Clip Norm Warmup Steps Batch Size

GTT-Large AdamW 3× 10−4 cosine 0.004 1.0 2048 1024
GTT-Small AdamW 6× 10−4 cosine 0.004 1.0 2048 2048
GTT-Tiny AdamW 1× 10−3 cosine 0.004 1.0 2048 4096

Table 6: Pretraining Setups for GTT models.

A. Experiment Details
Table 6 summarizes our pretraining setups for GTT variants. All GTT variants are trained on a cluster of Nvidia A800 GPUs.
Pretraining is stopped when the validation loss increases in three consecutive epochs.

For fine-tuning, we use the Adam optimizer (Kingma & Ba, 2014) with 10−3 learning rate (LR) and no LR decay. Fine-
tuning is also stopped when the validation loss increases in three consecutive epochs. The model with the best validation
loss is used for further experiments.

B. Detailed Experiment Results
We give the detailed results for multivariate time series forecasting on the benchmark datasets in Table 7. The detailed
results for univariate time series forecasting on benchmark datasets is presented in Table 8.

C. Visualization of Zero-shot Forecasting Results
To provide a clear view of GTT’s zero-shot forecast performance, we give an example of GTT’s zero-shot forecast results on
each benchmark datasets in Figure 6. For ETT datasets, we show results on all variables. For other datasets, we only show
results on the ”OT” variable.
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Table 7: Detailed results for multivariate time series forecasting. We fix the input context length of GTT to 128 for ILI, and
1024 for other datasets.

Model
GTT-Tiny GTT-Small GTT-Large GTT-Large GTT-Large GTT-Large

(100M traing samples) (50M traing samples) (Fine-tune)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.348 0.362 0.329 0.353 0.324 0.352 0.342 0.366 0.387 0.394 0.322 0.355
192 0.395 0.389 0.377 0.384 0.374 0.381 0.393 0.398 0.441 0.428 0.350 0.373
336 0.442 0.413 0.424 0.412 0.418 0.403 0.437 0.424 0.456 0.486 0.382 0.391
720 0.506 0.443 0.503 0.456 0.478 0.432 0.500 0.459 0.554 0.496 0.429 0.417

mean 0.423 0.402 0.408 0.401 0.398 0.392 0.418 0.412 0.467 0.444 0.370 0.383

E
T

T
m

2

96 0.203 0.270 0.200 0.269 0.178 0.256 0.200 0.268 0.196 0.271 0.176 0.256
192 0.273 0.316 0.270 0.315 0.247 0.304 0.261 0.309 0.267 0.319 0.225 0.290
336 0.331 0.353 0.328 0.352 0.307 0.344 0.316 0.344 0.332 0.362 0.272 0.323
720 0.400 0.398 0.412 0.406 0.383 0.395 0.395 0.394 0.421 0.419 0.340 0.370

mean 0.302 0.334 0.303 0.336 0.279 0.324 0.293 0.329 0.304 0.343 0.253 0.309

E
T

T
h1

96 0.396 0.393 0.391 0.390 0.375 0.384 0.380 0.380 0.391 0.391 0.366 0.377
192 0.444 0.420 0.437 0.413 0.414 0.407 0.436 0.409 0.444 0.420 0.410 0.401
336 0.466 0.436 0.459 0.427 0.424 0.419 0.468 0.432 0.475 0.444 0.433 0.418
720 0.522 0.476 0.506 0.461 0.460 0.450 0.524 0.475 0.548 0.496 0.474 0.451

mean 0.457 0.431 0.448 0.423 0.418 0.415 0.452 0.424 0.465 0.438 0.420 0.411

E
T

T
h2

96 0.274 0.328 0.268 0.317 0.251 0.310 0.262 0.312 0.275 0.319 0.236 0.308
192 0.321 0.362 0.316 0.352 0.295 0.342 0.315 0.349 0.320 0.354 0.275 0.335
336 0.356 0.390 0.343 0.378 0.318 0.366 0.350 0.379 0.383 0.355 0.309 0.362
720 0.433 0.445 0.426 0.435 0.393 0.421 0.419 0.433 0.419 0.432 0.374 0.411

mean 0.346 0.381 0.338 0.371 0.314 0.359 0.336 0.368 0.342 0.372 0.298 0.353

E
le

ct
ri

ci
ty

96 0.119 0.217 0.123 0.217 0.117 0.212 0.119 0.214 0.124 0.219 0.116 0.212
192 0.140 0.236 0.147 0.240 0.138 0.232 0.140 0.233 0.148 0.239 0.136 0.230
336 0.164 0.258 0.170 0.260 0.162 0.253 0.162 0.253 0.174 0.263 0.159 0.251
720 0.219 0.303 0.211 0.292 0.215 0.298 0.213 0.295 0.238 0.312 0.212 0.293

mean 0.161 0.254 0.163 0.252 0.157 0.249 0.159 0.249 0.171 0.258 0.155 0.246

Tr
af

fic

96 0.388 0.257 0.366 0.247 0.358 0.235 0.366 0.241 0.369 0.246 0.346 0.232
192 0.413 0.271 0.389 0.260 0.381 0.246 0.385 0.251 0.391 0.260 0.368 0.244
336 0.450 0.292 0.420 0.281 0.407 0.262 0.409 0.266 0.416 0.277 0.393 0.259
720 0.534 0.338 0.502 0.329 0.472 0.298 0.470 0.299 0.482 0.318 0.455 0.295

mean 0.446 0.289 0.419 0.279 0.404 0.260 0.407 0.264 0.415 0.275 0.390 0.257

W
ea

th
er

96 0.147 0.183 0.149 0.182 0.144 0.179 0.150 0.183 0.150 0.183 0.143 0.182
192 0.199 0.235 0.198 0.231 0.190 0.224 0.199 0.231 0.200 0.231 0.187 0.228
336 0.265 0.284 0.257 0.277 0.247 0.267 0.259 0.274 0.258 0.272 0.236 0.269
720 0.376 0.352 0.344 0.334 0.326 0.319 0.337 0.323 0.350 0.330 0.308 0.319

mean 0.246 0.264 0.237 0.256 0.227 0.247 0.236 0.253 0.240 0.254 0.218 0.249

IL
I

24 1.596 0.733 1.583 0.718 1.377 0.676 1.585 0.686 1.541 0.701 1.580 0.677
36 1.908 0.810 1.607 0.740 1.469 0.714 1.643 0.720 1.752 0.763 1.617 0.707
48 1.950 0.835 1.630 0.760 1.543 0.740 1.715 0.753 1.854 0.798 1.671 0.735
60 2.154 0.900 1.841 0.818 1.758 0.800 1.850 0.799 2.082 0.862 1.804 0.780

mean 1.902 0.819 1.666 0.759 1.536 0.732 1.698 0.739 1.807 0.781 1.668 0.724
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Table 8: Detailed results for univariate time series forecasting. We fix the input context length of GTT to 128 for ILI, and
1024 for other datasets.

Model GTT-Large ForecastPFN
MSE MAE NRMSE WAPE MSE MAE

E
T

T
m

1
96 0.029 0.127 0.129 0.096 0.171 0.317

192 0.041 0.149 0.153 0.112 0.174 0.321
336 0.053 0.167 0.173 0.126 0.177 0.325
720 0.071 0.196 0.198 0.146 0.176 0.324

mean 0.049 0.160 0.163 0.120 0.175 0.322

E
T

T
m

2

96 0.069 0.190 0.240 0.174 0.565 0.599
192 0.098 0.232 0.285 0.211 0.568 0.599
336 0.128 0.269 0.325 0.244 0.570 0.598
720 0.177 0.326 0.378 0.293 0.568 0.596

mean 0.118 0.254 0.307 0.231 0.568 0.598

E
T

T
h1

96 0.063 0.189 0.203 0.153 0.198 0.358
192 0.075 0.211 0.219 0.169 0.184 0.345
336 0.087 0.229 0.230 0.179 0.186 0.347
720 0.114 0.262 0.249 0.194 0.191 0.350

mean 0.084 0.222 0.225 0.174 0.190 0.350

E
T

T
h2

96 0.137 0.285 0.397 0.306 0.608 0.619
192 0.175 0.327 0.440 0.345 0.566 0.598
336 0.219 0.374 0.471 0.376 0.588 0.612
720 0.318 0.450 0.512 0.408 0.655 0.642

mean 0.212 0.359 0.455 0.359 0.604 0.618

E
le

ct
ri

ci
ty

96 0.217 0.314 0.562 0.378 2.206 1.221
192 0.249 0.336 0.602 0.405 2.165 1.206
336 0.281 0.363 0.641 0.438 2.251 1.231
720 0.322 0.408 0.694 0.500 2.405 1.272

mean 0.267 0.355 0.625 0.430 2.257 1.233

Tr
af

fic

96 0.103 0.186 0.269 0.156 4.173 1.654
192 0.110 0.198 0.278 0.166 4.090 1.646
336 0.124 0.219 0.294 0.183 4.111 1.649
720 0.171 0.275 0.342 0.228 4.111 1.651

mean 0.126 0.219 0.296 0.183 4.121 1.650

W
ea

th
er

96 0.001 0.022 0.445 0.317 0.002 0.038
192 0.001 0.027 0.520 0.383 0.002 0.038
336 0.002 0.030 0.574 0.431 0.003 0.040
720 0.002 0.036 0.683 0.513 0.003 0.043

mean 0.002 0.028 0.556 0.411 0.003 0.040

IL
I

24 0.471 0.470 0.313 0.215 1.102 0.887
36 0.522 0.520 0.321 0.231 1.071 0.893
48 0.605 0.572 0.334 0.245 1.210 0.949
60 0.732 0.640 0.354 0.265 1.447 1.032

mean 0.582 0.551 0.331 0.239 1.208 0.940
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(a) ETTm1 (b) ETTm2

(c) ETTh1 (d) ETTh2

(e) Electricity (f) Traffic

(g) Weather (h) ILI

Figure 6: Examples of GTT’s zero-shot forecast results on benchmark datasets
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